作为一个三国迷,我就有了这样的想法:能不能用文本处理的方法,得到《三国演义》中的人物社交网络,再进行分析呢?python中有很多好工具能够帮助我实践我好奇的想法,现在就开始动手吧。
作者:blmoistawinde
来源:数据森麟(ID:shujusenlin)
01 准备工作
获得《三国演义》的文本。
chapters = get_sanguo() # 文本列表,每个元素为一章的文本
print(chapters[0][:106])
第一回 宴桃园豪杰三结义 斩黄巾英雄首立功
滚滚长江东逝水,浪花淘尽英雄。是非成败转头空。
青山依旧在,几度夕阳红。
白发渔樵江渚上,惯看秋月春风。一壶浊酒喜相逢。
古今多少事,都付笑谈中
《三国演义》并不是很容易处理的文本,它接近古文,我们会面对古人的字号等一系列别名。比如电脑怎么知道“玄德”指的就是“刘备”呢?那就要我们给它一些知识。我们人通过学习知道“玄德”是刘备的字,电脑也可以用类似的方法完成这个概念的连接。
我们需要告诉电脑,“刘备”是实体(类似于一个对象的标准名),而“玄德”则是“刘备”的一个指称,告诉的方式,就是提供电脑一个知识库。
entity_mention_dict, entity_type_dict = get_sanguo_entity_dict()
print("刘备的指称有:",entity_mention_dict["刘备"])
刘备的指称有: ['刘备', '刘玄德', '玄德', '使君']
除了人的实体和指称以外,我们也能够包括三国势力等别的类型的指称,比如“蜀”又可以叫“蜀汉”,所以知识库里还可以包括实体的类型信息来加以区分。
print("刘备的类型为",entity_type_dict["刘备"])
print("蜀的类型为",entity_type_dict["蜀"])
print("蜀的指称有",entity_mention_dict["蜀"])
刘备的类型为 人名
蜀的类型为 势力
蜀的指称有 ['蜀', '蜀汉']
有了这些知识,理论上我们就可以编程联系起实体的各个绰号啦。不过若是要从头做起的话,其中还会有不少的工作量。而HarvestText[1]是一个封装了这些步骤的文本处理库,可以帮助我们轻松完成这个任务。
ht = HarvestText()
ht.add_entities(entity_mention_dict, entity_type_dict) # 加载模型
print(ht.seg("誓毕,拜玄德为兄,关羽次之,张飞为弟。",standard_name=True))
['誓毕', ',', '拜', '刘备', '为兄', ',', '关羽', '次之', ',', '张飞', '为弟', '。']
02 社交网络建立
成功地把指称统一到标准的实体名以后,我们就可以着手挖掘三国的社交网络了。具体的建立方式是利用邻近共现关系。每当一对实体在两句话内同时出现,就给它们加一条边。那么建立网络的整个流程就如同下图所示:
我们可以使用HarvestText提供的函数直接完成这个流程,让我们先在第一章的小文本上实践一下:
# 准备工作
doc = chapters[0].replace("操","曹操") # 由于有时使用缩写,这里做一个微调
ch1_sentences = ht.cut_sentences(doc) # 分句
doc_ch01 = [ch1_sentences[i]+ch1_sentences[i+1] for i in range(len(ch1_sentences)-1)] #获得所有的二连句
ht.set_linking_strategy("freq")
# 建立网络
G = ht.build_entity_graph(doc_ch01, used_types=["人名"]) # 对所有人物建立网络,即社交网络
# 挑选主要人物画图
important_nodes = [node for node in G.nodes if G.degree[node]>=5]
G_sub = G.subgraph(important_nodes).copy()
draw_graph(G_sub,alpha=0.5,node_scale=30,figsize=(6,4))
他们之间具体有什么关系呢?我们可以利用文本摘要得到本章的具体内容:
stopwords = get_baidu_stopwords() #过滤停用词以提高质量
for i,doc in enumerate(ht.get_summary(doc_ch01, topK=3, stopwords=stopwords)):
print(i,doc)
玄德见皇甫嵩、朱儁,具道卢植之意。嵩曰:“张梁、张宝势穷力乏,必投广宗去依张角。
时张角贼众十五万,植兵五万,相拒于广宗,未见胜负。植谓玄德曰:“我今围贼在此,贼弟张梁、张宝在颍川,与皇甫嵩、朱儁对垒。
次日,于桃园中,备下乌牛白马祭礼等项,三人焚香再拜而说誓曰:“念刘备、关羽、张飞,虽然异姓,既结为兄弟,则同心协力,
本章的主要内容,看来就是刘关张桃园三结义,并且共抗黄巾贼的故事。
03 三国全网络绘制
有了小范围实践的基础,我们就可以用同样的方法,整合每个章节的内容,画出一张横跨三国各代的大图。
G_chapters = []
for chapter in chapters:
sentences = ht.cut_sentences(chapter) # 分句
docs = [sentences[i]+sentences[i+1] for i in range(len(sentences)-1)]
G_chapters.append(ht.build_entity_graph(docs, used_types=["人名"]))
# 合并各张子图
G_global = nx.Graph()
for G0 in G_chapters:
for (u,v) in G0.edges:
if G_global.has_edge(u,v):
G_global[u][v]["weight"] += G0[u][v]["weight"]
else:
G_global.add_edge(u,v,weight=G0[u][v]["weight"])
# 忽略游离的小分支只取最大连通分量
largest_comp = max(nx.connected_components(G_global), key=len)
G_global = G_global.subgraph(largest_comp).copy()
print(nx.info(G_global))
Name:
Type: Graph
Number of nodes: 1290
Number of edges: 10096
Average degree: 15.6527
整个社交网络有1290个人那么多,还有上万条边!那么我们要把它画出来几乎是不可能的,那么我们就挑选其中的关键人物来画出一个子集吧。
important_nodes = [node for node in G_global.nodes if G_global.degree[node]>=30]
G_main = G_global.subgraph(important_nodes).copy()
用pyecharts进行可视化
from pyecharts import Graph
nodes = [{"name": "结点1", "value":0, "symbolSize": 10} for i in range(G_main.number_of_nodes())]
for i,name0 in enumerate(G_main.nodes):
nodes[i]["name"] = name0
nodes[i]["value"] = G_main.degree[name0]
nodes[i]["symbolSize"] = G_main.degree[name0] / 10.0
links = [{"source": "", "target": ""} for i in range(G_main.number_of_edges())]
for i,(u,v) in enumerate(G_main.edges):
links[i]["source"] = u
links[i]["target"] = v
links[i]["value"] = G_main[u][v]["weight"]
graph = Graph("三国人物关系力导引图")
graph.add("", nodes, links)
graph.render("./images/三国人物关系力导引图.html")
graph
博客上不能显示交互式图表,这里就给出截图:显示了刘备的邻接结点
整个网络错综复杂,背后是三国故事中无数的南征北伐、尔虞我诈。不过有了计算机的强大算力,我们依然可以从中梳理出某些关键线索,比如:
04 人物排名-重要性
对这个问题,我们可以用网络中的排序算法解决。PageRank就是这样的一个典型方法,它本来是搜索引擎利用网站之间的联系对搜索结果进行排序的方法,不过对人物之间的联系也是同理。让我们获得最重要的20大人物:
page_ranks = pd.Series(nx.algorithms.pagerank(G_global)).sort_values()
page_ranks.tail(20).plot(kind="barh")
plt.show()
《三国演义》当仁不让的主角就是他们了,哪怕你对三国不熟悉,也一定会对这些人物耳熟能详。
05 人物排名-权力值
这个问题看上去跟上面一个问题很像,但其实还是有区别的。就像人缘最好的人未必是领导一样,能在团队中心起到凝聚作用,使各个成员相互联系合作的人才是最有权力的人。中心度就是这样的一个指标,看看三国中最有权力的人是哪些吧?
between = pd.Series(nx.betweenness_centrality(G_global)).sort_values()
between.tail(20).plot(kind="barh")
plt.show()
结果的确和上面的排序有所不同,我们看到刘备、曹操、孙权、袁绍等主公都名列前茅。而另一个有趣的发现是,司马懿、司马昭、司马师父子三人同样榜上有名,而曹氏的其他后裔则不见其名,可见司马氏之权倾朝野。司马氏之心,似乎就这样被大数据揭示了出来!
06 社群发现
人物关系有亲疏远近,因此往往会形成一些集团。社交网络分析里的社区发现算法就能够让我们发现这些集团,让我使用community库[2]中的提供的算法来揭示这些关系吧。
import community # python-louvain
partition = community.best_partition(G_main) # Louvain算法划分社区
comm_dict = defaultdict(list)
for person in partition:
comm_dict[partition[person]].append(person)
在下面3个社区里,我们看到的主要是魏蜀吴三国重臣们。(只有一些小“问题”,有趣的是,电脑并不知道他们的所属势力,只是使用算法。)
draw_community(2)
community 2: 张辽 曹仁 夏侯惇 徐晃 曹洪 夏侯渊 张郃 许褚 乐进 李典 于禁
荀彧 刘晔 郭嘉 满宠 程昱 荀攸 吕虔 典韦 文聘 董昭 毛玠
draw_community(4)
community 4: 曹操 诸葛亮 刘备 关羽 赵云 张飞 马超 黄忠 许昌 孟达[魏] 孙乾
曹安民 刘璋 关平 庞德 法正 伊籍 张鲁 刘封 庞统 孟获 严颜 马良 简雍 蔡瑁
陶谦 孔融 刘琮[刘表子] 刘望之 夏侯楙 周仓 陈登
draw_community(3)
community 3: 孙权 孙策 周瑜 陆逊 吕蒙 丁奉 周泰 程普 韩当 徐盛 张昭[吴] 马相 黄盖[吴] 潘璋 甘宁 鲁肃 凌统 太史慈 诸葛瑾 韩吴郡 蒋钦 黄祖 阚泽 朱桓 陈武 吕范
draw_community(0)
community 0: 袁绍 吕布 刘表 袁术 董卓 李傕 贾诩 审配 孙坚 郭汜 陈宫 马腾
袁尚 韩遂 公孙瓒 高顺 许攸[袁绍] 臧霸 沮授 郭图 颜良 杨奉 张绣 袁谭 董承
文丑 何进 张邈[魏] 袁熙
还有一些其他社区。比如在这里,我们看到三国前期,孙坚、袁绍、董卓等主公们群雄逐鹿,好不热闹。
draw_community(1)
community 1: 司马懿 魏延 姜维 张翼 马岱 廖化 吴懿 司马昭 关兴 吴班 王平
邓芝 邓艾 张苞[蜀] 马忠[吴] 费祎 谯周 马谡 曹真 曹丕 李恢 黄权 钟会 蒋琬
司马师 刘巴[蜀] 张嶷 杨洪 许靖 费诗 李严 郭淮 曹休 樊建 秦宓 夏侯霸 杨仪
高翔 张南[魏] 华歆 曹爽 郤正 许允[魏] 王朗[司徒] 董厥 杜琼 霍峻 胡济 贾充
彭羕 吴兰 诸葛诞 雷铜 孙綝 卓膺 费观 杜义 阎晏 盛勃 刘敏 刘琰 杜祺 上官雝
丁咸 爨习 樊岐 曹芳 周群
这个社区是三国后期的主要人物了。这个网络背后的故事,是司马氏两代三人打败姜维率领的蜀汉群雄,又扫除了曹魏内部的曹家势力,终于登上权力的顶峰。
07 动态网络
研究社交网络随时间的变化,是个很有意思的任务。而《三国演义》大致按照时间线叙述,且有着极长的时间跨度,顺着故事线往下走,社交网络会发生什么样的变化呢?
这里,我取10章的文本作为跨度,每5章记录一次当前跨度中的社交网络,就相当于留下一张快照,把这些快照连接起来,我们就能够看到一个社交网络变化的动画。快照还是用networkx得到,而制作动画,我们可以用moviepy。
江山代有才人出,让我们看看在故事发展的各个阶段,都是哪一群人活跃在舞台中央呢?
import moviepy.editor as mpy
from moviepy.video.io.bindings import mplfig_to_npimage
width, step = 10,5
range0 = range(0,len(G_chapters)-width+1,step)
numFrame, fps = len(range0), 1
duration = numFrame/fps
pos_global = nx.spring_layout(G_main)
def make_frame_mpl(t):
i = step*int(t*fps)
G_part = nx.Graph()
for G0 in G_chapters[i:i+width]:
for (u,v) in G0.edges:
if G_part.has_edge(u,v):
G_part[u][v]["weight"] += G0[u][v]["weight"]
else:
G_part.add_edge(u,v,weight=G0[u][v]["weight"])
largest_comp = max(nx.connected_components(G_part), key=len)
used_nodes = set(largest_comp) & set(G_main.nodes)
G = G_part.subgraph(used_nodes)
fig = plt.figure(figsize=(12,8),dpi=100)
nx.draw_networkx_nodes(G,pos_global,node_size=[G.degree[x]*10 for x in G.nodes])
# nx.draw_networkx_edges(G,pos_global)
nx.draw_networkx_labels(G,pos_global)
plt.xlim([-1,1])
plt.ylim([-1,1])
plt.axis("off")
plt.title(f"第{i+1}到第{i+width+1}章的社交网络")
return mplfig_to_npimage(fig)
animation = mpy.VideoClip(make_frame_mpl, duration=duration)
animation.write_gif("./images/三国社交网络变化.gif", fps=fps)
美观起见,动画中省略了网络中的边。
随着时间的变化,曾经站在历史舞台中央的人们也渐渐地会渐渐离开,让人不禁唏嘘感叹。正如《三国演义》开篇所言:
古今多少事,都付笑谈中。
今日,小辈利用python做的一番笑谈也就到此结束吧……
本文为简洁起见省略了一些细节代码,公众号后台回复三国,可以获取本文代码地址。
注:
[1] harvesttext是本人的作品,已在Github上开源并可通过pip直接安装,旨在帮助使用者更轻易地完成像本文这样的文本数据分析。除了本文涉及的功能以外,还有情感分析、新词发现等功能。大家觉得有用的话,不妨亲身尝试下,看看能不能在自己感兴趣的文本上有更多有趣有用的发现呢?
[2]commutity库的本名是python-louvain,使用了和Gephi内置相同的Louvain算法进行社区发现
[3]由于处理古文的困难性,本文中依然有一些比较明显的错误,希望大家不要介意~
关于作者:blmoistawinde, 西南某高校学森一枚,喜欢有意思的数据挖掘分析。希望给世界带来些清新空气~个人博客地址:
https://blog.csdn.net/blmoistawinde
原文始发于微信公众号(大数据):《三国演义》社交网络数据分析:最重要的一号人物竟是……